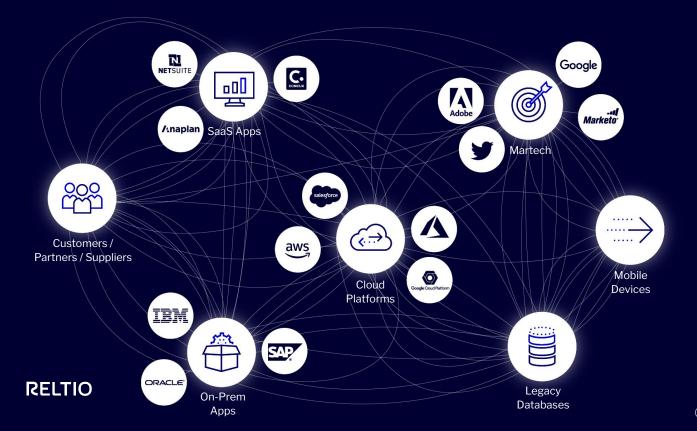


Architecting a Modern Data Platform

Presented by: William McKnight "#1 Global Influencer in Big Data" Thinkers360 President, McKnight Consulting Group 3 x Inc 5000



Architecting a Modern Data Platform

Siloed, fragmented data + failed digital outcomes = double blow to future growth

Poor quality, duplicate data

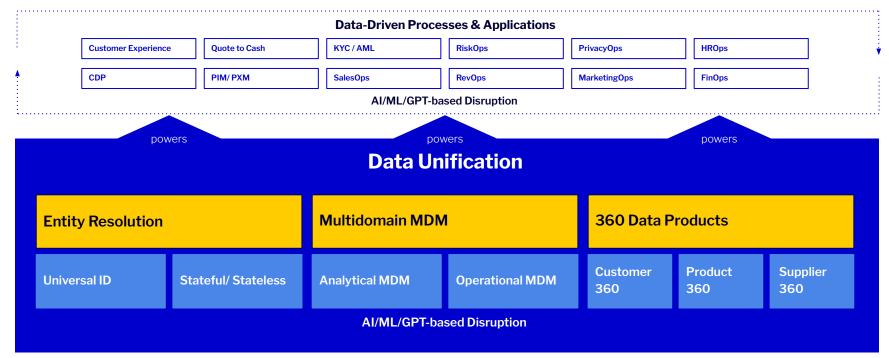
Data is unreliable

Delays in mobilizing data

Data Unification & Management: Core data as a singular, interoperable asset

Data Sources								Data Consumers
))))))))))))))))))))))))))))))))))))))	Intelligence and a	automation						
ata Lake	Next best a	actions	Pr	opensity Model	s	Risk intellig	ence	×
								GPT / LLMs
Data Warehouse	Unification							
			$\overset{\bigcirc}{\sim}$			<u> </u>	\bigcirc	⊔⊔∷ Applications
Legacy Systems		count	Contact	Product	Supplier	Assets	Location	
SaaS Apps								 BI, Analytics & Reporting
တn-prem Apps	Metadata, Quality, Integration							
	Data catalog D		Data quality	Data quality Data integration		n Reference data mgmt		کے\ Digital Automation
3rd Party Data								

Reltio unifies, manages, and mobilizes your core data



Trusted, interoperable data

Real-time, always on

Secure, scalable, and flexible

Reltio meets organizations where they are in their data unification journey

Trusted, reusable data assets to active across the enterprise

Thank you

DATADRIVEN MODERN DATA MANAGEMENT CONFERENCE

October 7 – 9, 2024

Orlando, FL

datadriven24.com

reltio.com

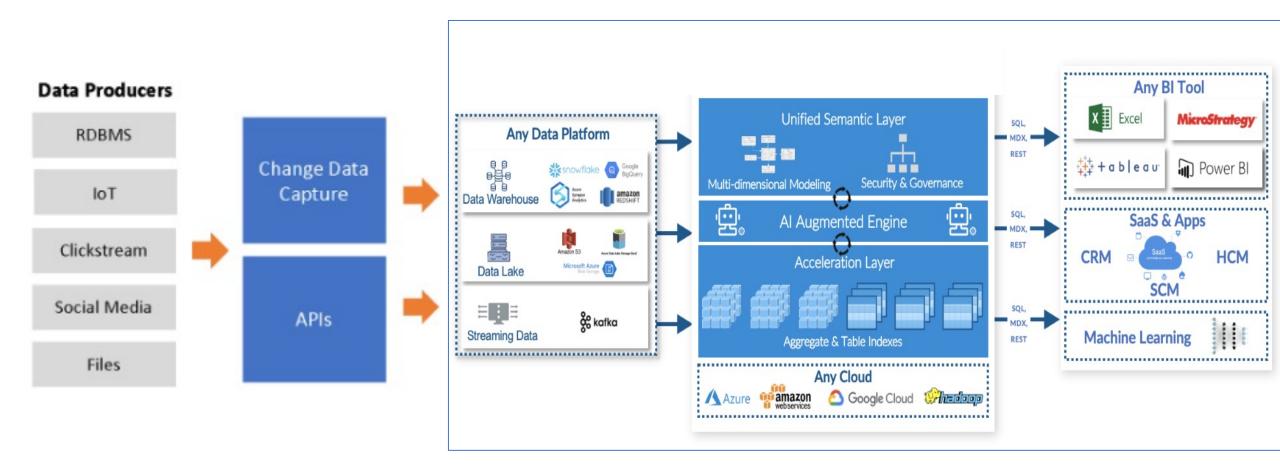
RELTIO

McKnight Consulting Group Partial Technology Implementation Expertise

Big/Analytic/Vector/Mixed Data Management

Data Movement and APIs

Operational/Transactional Data Management


Modern Data Platforms

Data Platform Decisions

- OLTP vs OLAP
 - Operational vs Analytical Data
- Relational or Object storage
- Batch vs Stream
 - Lambda Architecture
- Big Data vs Not Big Data
- SMP and MPP
- Polyglot Persistence
 - Multi-Model Databases
- Single Vendor vs Best-of-Breed
- Departmental vs Enterprise-Wide
- Open Source vs Closed Source

Modern Data Platform

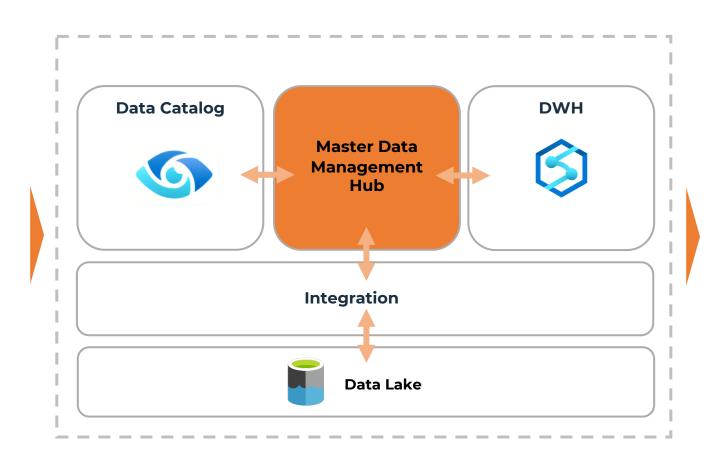
Modern Data Platforms - Sample Components

		aws	2	
Category				
Data Warehouse Compute	Azure Synapse	Amazon Redshift ra3.4xlarge	Google BigQuery Annual Slots	Snowflake
Storage	Azure Synapse SQL Pool	Amazon Redshift Managed Storage	Google BigQuery Active Storage	Snowflake
Data Integration	Azure Data Factory	AWS Glue	Google Dataflow Batch	Talend Cloud Data Integration
Streaming	Azure Stream Analytics	Amazon Kinesis	Google Dataflow Streaming	Kafka Confluent Cloud
Data Exploration	Azure Synapse	Amazon Redshift Spectrum	Google BigQuery On- Demand	Snowflake
Data Lake	Azure HDInsight	Amazon EMR	Google Dataproc	Cloudera Data Hub + S3
Business Intelligence	Power BI Professional	Amazon Quicksight	Google BigQuery Bl Engine	Tableau
Data Science and Machine Learning	Azure Machine Learning	Amazon SageMaker	Google BigQuery ML	Amazon SageMaker
Identity Management	Azure Active Directory P1	Amazon IAM	Google Cloud IAM	Amazon IAM
Data Catalog	Azure Purview	AWS Glue Data Catalog	Google Data Catalog	Alation Data Catalog

Data Warehouse Compute

- Core of the Analytics Stack: Dedicated compute represents the data warehouse itself, the heart of the analytics stack.
- Separate Architecture: Modern cloud data warehouses require separate compute and storage architecture.
- Independent Scaling: Scaling compute and storage independently is an industry standard, allowing for optimized resource allocation.
- **Cost Component:** This section focuses on the costs associated with running the compute portion of the data warehouse.

	Vendor Offering	Pricing Used
Δ	Azure Synapse Analytics Workspace	Pay as you go (\$1.20/hour per 100 DWU) ²
aws	Amazon Redshift RA3	1-year commitment all-upfront (\$8.61 effective hourly) ³
2	Google BigQuery	Annual slot commitment (\$1,700 per 100 slots) ⁴
業	Snowflake Computing	Enterprise+ (\$4.00 per hour per credit) ⁵



- On-premises storage: Provides direct control but requires hardware management and maintenance. (e.g., HDDs, SSDs)
- **Cloud storage:** Scalable and cost-effective, offering various deployment models (public, private, hybrid)
- Network-attached storage (NAS): Centralized storage accessible across a network, ideal for file sharing
- Storage area network (SAN): High-performance storage for mission-critical applications

Master Data Management

Enterprise Subject Areas

- Customer
 Agencies
- Employee
 Branches
- Partner Facilities
- Patient

• Supplier

• Product

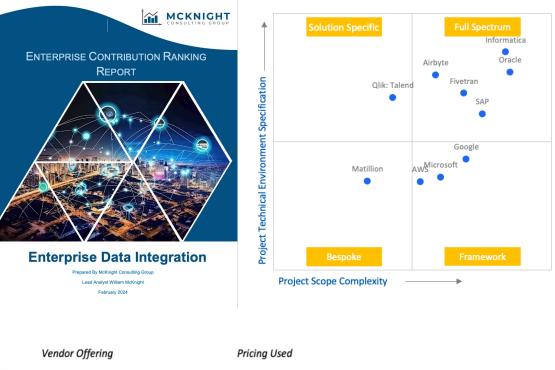
Materials

• Bill of

• Assets

• Media

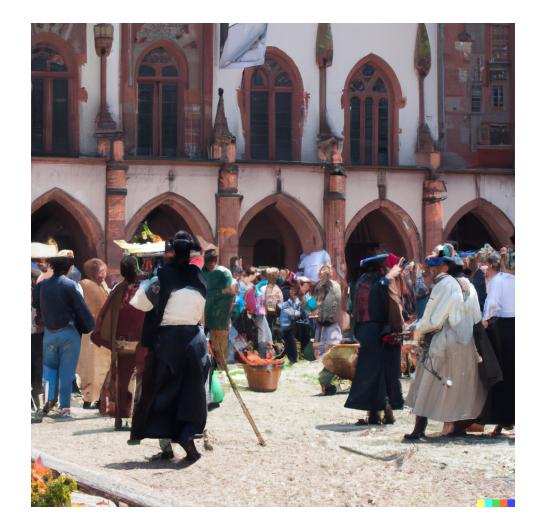
• Citizen


- FranchisesStores
- Account
- Certifications
- Contracts
- Financials
- Equipment Policies
 - Weather
- WeatrGeography

MCKNIGHT

Data Integration

- ETL vs ELT
- Reverse ETL
- Azure Data Factory (ADF): We considered integration runtime pricing and Data Integration Unit (DIU) utilization. Pricing details for DIU compute power are not publicly available.
- **AWS Glue:** We based costs on Data Processing Units (DPU) with compute power of 4 vCPU and 16 GB of memory per DPU.
- **Google Dataflow:** Costs are based on worker-hours, with a default worker offering 1 vCPU and 3.75 GB memory.
- **Snowflake:** Requires a third-party solution like Talend Cloud Data Integration, priced per user per year, with additional cloud vendor charges for virtual machines (VMs) to run Talend.


https://tinyurl.com/McKnightDI

Δ	Azure Data Factory (ADF)	\$0.25 per DIU-hour + \$1.00 per 1,000 activity runs
aws	AWS Glue	\$0.44 per DPU-hour
0	Google Dataflow (Batch)	\$0.0828 per worker-hour
袾	Talend Cloud Data Integration	\$12,000 per user per year + compute (Azure VM E16a v4 at \$1.008 per hour)

Streaming

- **Emerging Software Category:** Data streaming is a new approach for processing data in real-time.
- Apache Kafka and Managed Kafka Services: Numerous vendors offer Kafka platforms and cloud-based services for easier deployment and management.
- Stream Processing Ecosystem: A wide range of complementary stream processing engines like Apache Flink and SaaS solutions have emerged to handle the processed data streams.
- **Competitive Landscape:** Technologies like Pulsar and Redpanda are vying for market share alongside established solutions.

Data Science and Machine Learning

Focus: Predictive and prescriptive analytics using machine learning and AI techniques.

Benefits: Streamline processes for efficiency and transparency.

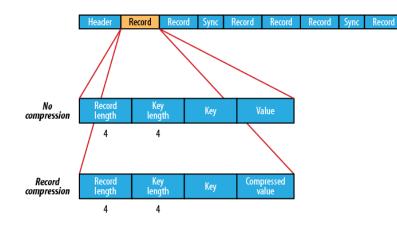
Free up data scientists from manual tasks.

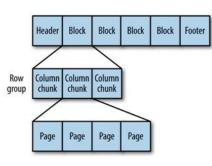
Support the entire data science lifecycle:

- Data preparation
- Model training
- Feature engineering
- Testing
- Deployment

3-

Integration: Integrate with common frameworks for faster development. Security and Governance: Adhere to enterprise data governance and security standards.




Scalability: Enable organizations to scale data science efforts for growing Al needs.

Data Lake

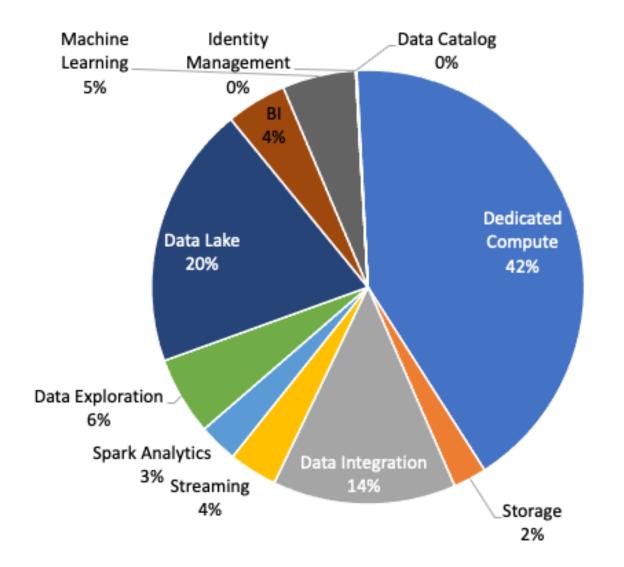
- Common & centralized storage for the enterprise
- No defined data model into which the data is formed
- No relationships between the datasets
- Historical data retention
- All data formats
- For big data
- Analytical processing
- Data scientists and analysts
- Less governance/quality than data warehouse
 - Focus: Ingestion

	Vendor Offering	Pricing Used
	Azure Synapse Serverless	\$5 per TB-scanned
aws	Amazon Redshift Spectrum	\$5 per TB-scanned + compute (\$8.61 effective hourly) ²²
2	Google BigQuery	\$5 per TB-scanned (On demand rate) 23
茶	Snowflake	Enterprise+ (\$4.00 per hour per credit) ²⁴

Data Governance

- Data Catalog
- DevOps
- MLOps
- Security information and event management

Data Observability


- Improved data quality (discoverable, available, usable, governable, high-quality)
- Faster troubleshooting and issue resolution
- · Reduced data downtime and increased reliability
- Enhanced ability to leverage data for business goals
- Data observability is broader than data quality, encompassing data in motion and at rest, while traditional data quality focuses on data at rest.
- Relevant for data pipelines, repositories, and various deployment environments (distributed, edge, onpremises, hybrid, multi/polycloud)
- Leverages automation, AIOps, predictive analytics, and knowledge representation for core functionalities.

lert Pol	ucies					
) o 1-H	HCP Profile 🗸					
Aler	rt Policies				🛕 Data Binnin	9 +
	Name	Attributes	Data Quality Indicator	Enabled	Notification	Edit
\odot	Business Metric Drifts				4	1
\odot	Schema Drifts				4	1
\odot	Freshness Drifts				4	/
\odot	Record Count Drifts				14	1
\odot	Correctness Drifts	Address->City, Address->Country_Name			14	/
\odot	Completeness Drifts	Address->City, Address->Country_Name			14	1
\odot	Uniqueness Drifts	Address->City, Address->Country_Name			14	1
\odot	Number Value Drifts	Address->City, Address->Country_Name			14	1
0	Value Distribution Drifts	Address->City, Address->Country_Name			14	1
\odot	Data Drifts	Address->City, Address->Country_Name			4	1
0	Record Count Correlation Drifts				4	1
0	Uniqueness Correlation Drifts				4	1
0	Data Difference				4	1
0	Data Process Failure				4	1

TCO of a Modern Data Platform

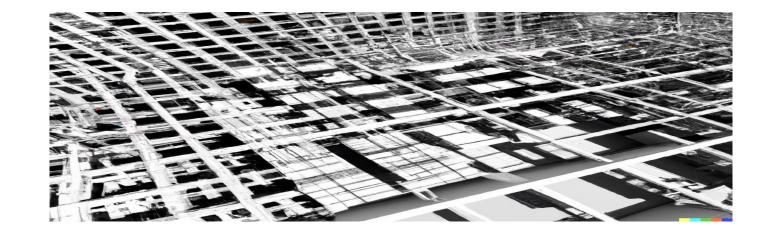
Sample Stack Cost Breakout

Cost Predictability and Transparency

- The cost profile options for cloud databases are straightforward if you accept the defaults for simple workload or proof-of-concept (POC) environments
- Initial entry costs and inadequately scoped environments can artificially lower expectations of the true costs of jumping into a cloud data warehouse environment.
- For some, you pay for compute resources as a function of **time**, but you also choose the hourly rate based on certain **enterprise features** you need.
- With some platforms, you pay for **bytes processed** and the underlying architecture is unknown. The environment is scaled automatically without affecting price. There is also a cost-per-hour flat rate where you would need to calculate how long it would take to run your queries to completion to predict costs.
- Customers need to analyze current workloads, performance, and concurrency and project those into realistic pricing in alternative platforms.

Cost Consciousness and Licensing Structure

- Be on the lookout for cost optimizations like not paying when the system is idle, compression to save storage costs, and moving or isolating workloads to avoid contention.
- Look for the ability to directly operate on compact open file formats Parquet and ORC
- Also, costs can spin out of control if you have to pay a separate license for each deployment option or each machine learning algorithm.
- Finally, also consider if you will be paying per user, per node, per terabyte, per CPU, per hour, etc..



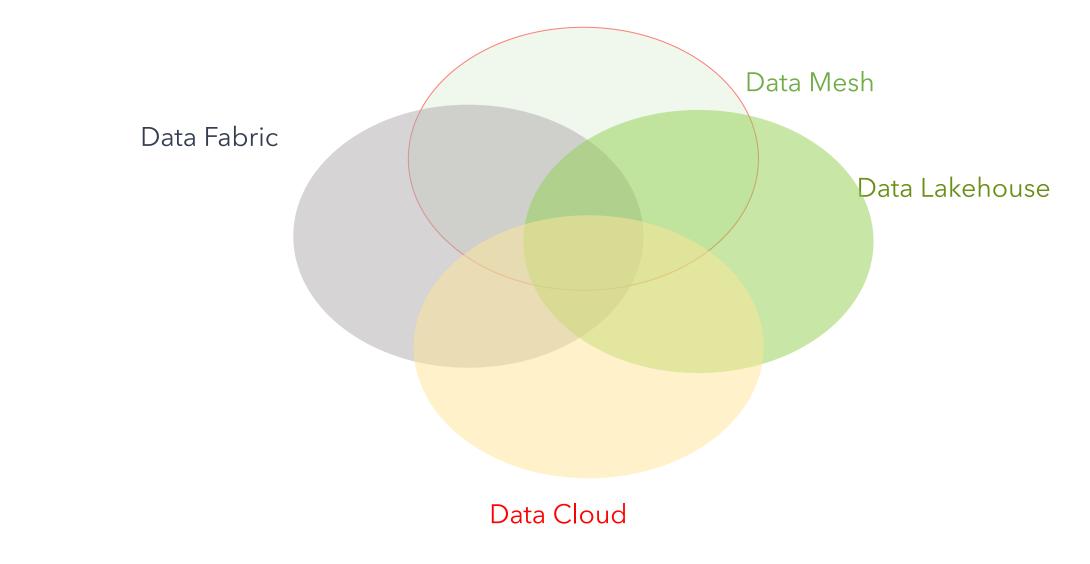
Distributed Data Architecture Patterns

Distributed Data Architecture Patterns

- The data lake architecture has shortcomings that lead to unfulfilled promises at scale
 - Monolithic, Centralized
 - Coupled pipeline decomposition
 - Hyper specialized ownership

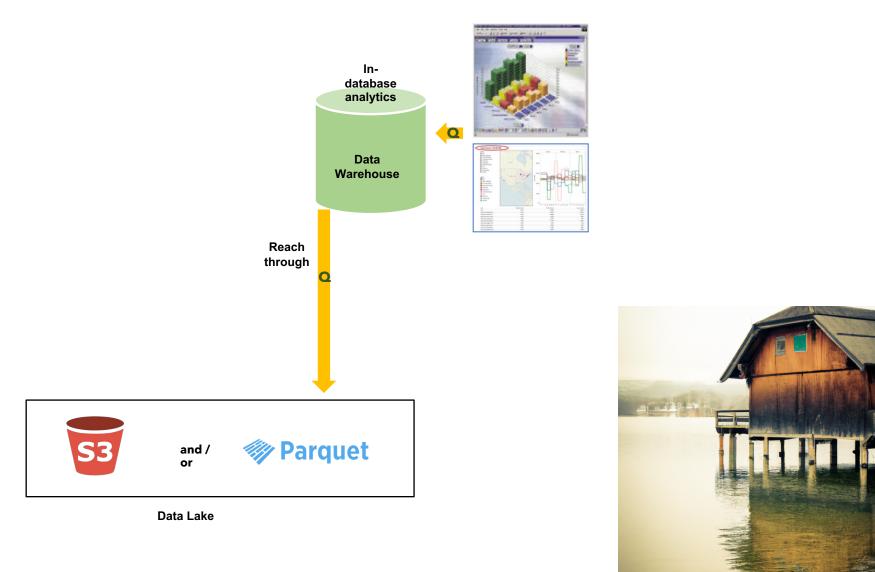
Pros and Cons of Following Architectural Patterns

Pros


- Theoretically, it's science and has been validated
- Decisions addressed you were unaware of
 Understandable

<u>Cons</u>

- Can lose focus on the business priorities
- May not be right for you
- Can take longer for adherence



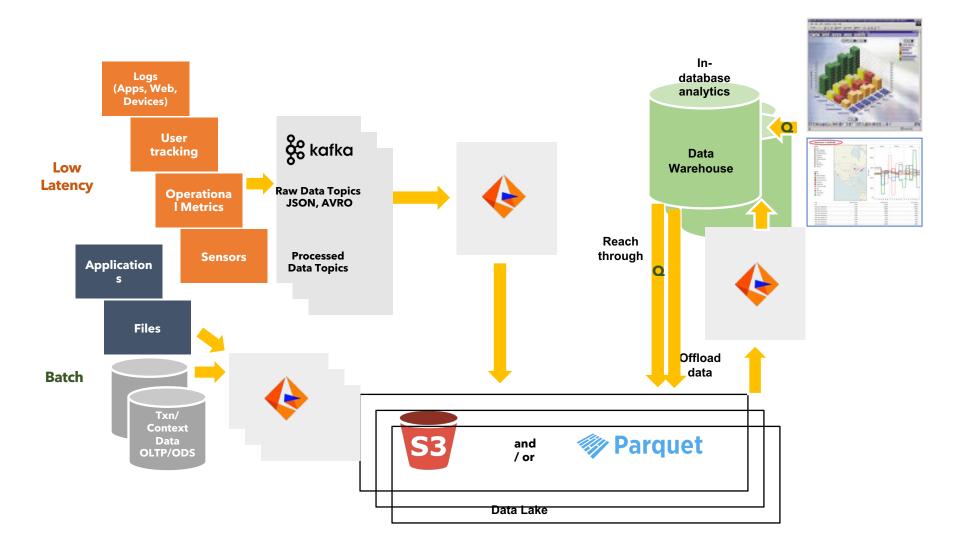
These are not Mutually Exclusive

Data Lakehouse

Data Lakehouse Principles

- Managing Data
- Formats that can be Accessed Easily
- Adaptable Storage
- Facilitating the Continuous Flow of Data
- Handling Varied Tasks

Benefits of a Data Lakehouse


- Administration Management
- Better Organization of Information
- Simplified Rules and Regulations
- More Cost-Efficiency

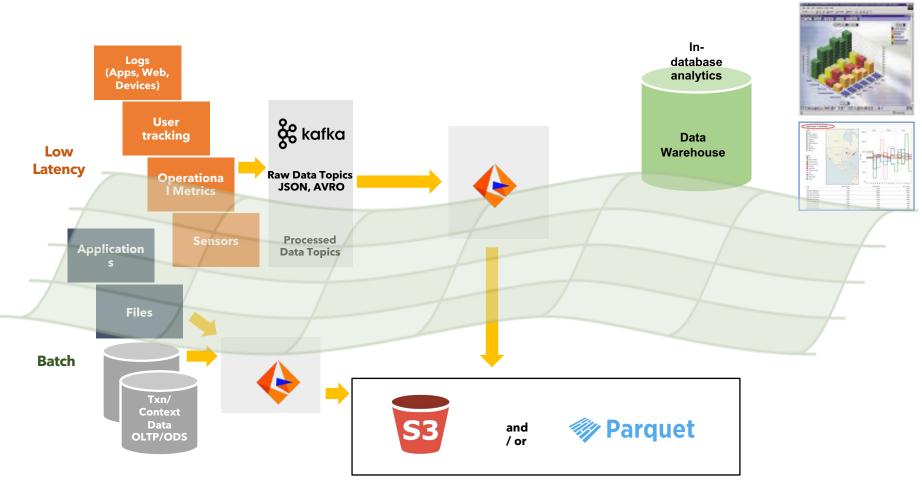
Snowflake External Tables

- Schema on read
 - If an error occurs, it skips to the next file, but still returns rows found in the current file up until the error occurred.
- Recommended 16MB 256MB file sizes (256-512MB for Parquet)
- Delta Lake support
- Workflow:
 - CREATE STAGE > CREATE EXTERNAL TABLE > Create cloud object storage event notification > Automatic refresh

Data Mesh

Data Mesh Principles

- Domain Ownership
- Data as a Product
- Self-Service Data
- Federated Governance


Benefits of a Data Mesh

- Democratization of Data
- Cost-saving Measures
- Reduced Technical Debt
- Collaboration
- Safety and Adherence

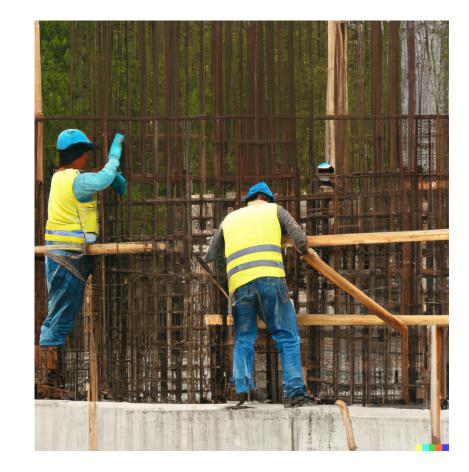
Data Fabric

Data Lake

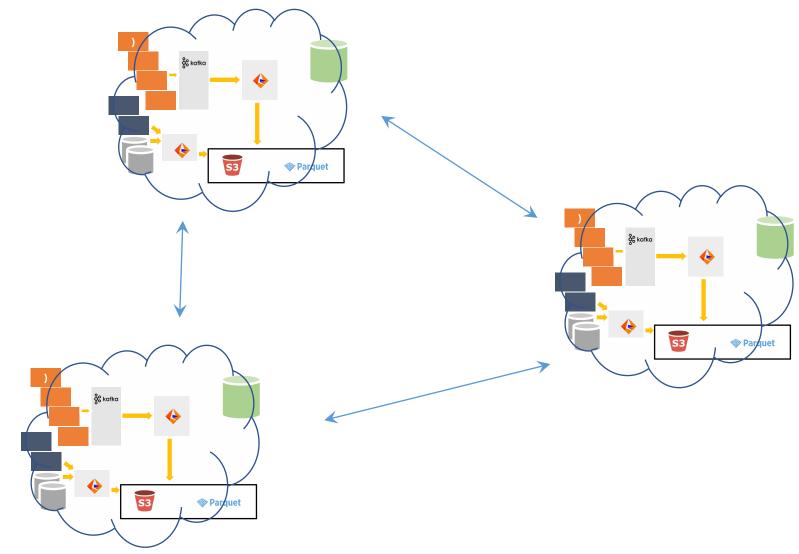
Data Fabric Principles

Intelligent and Automated

Unification of Disparate Data Systems

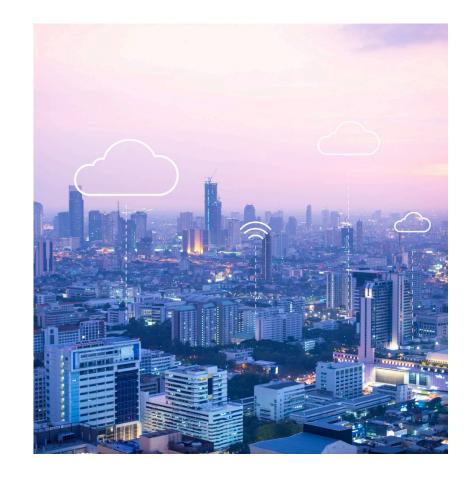

Access to Integrated Enterprise Data

Scale Efficiently


Multi-Cloud Awareness

Benefits of a Data Fabric

- Integrated Intelligence
- Data Democratization
- Improved Data Security
- Universal access to all data sources
- Standardized data format
- Reduced complexity for end users
- Improved data integration and standardization
- Enables access to data from various sources


Data Cloud

- There are many lens to view data platform decisions
- Components include data warehouse compute, storage, master data management, data integration, streaming, data science/machine learning, data lake, data governance and data observability
- For most companies, all are essential, and most are product decisions
- Data architecture can easily make or break a company
- TCO, ROI, cost predictability and transparency are important
- Data lakehouse, data mesh, data fabric and data cloud are all valuable and not mutually exclusive

Architecting a Modern Data Platform

Presented by: William McKnight "#1 Global Influencer in Big Data" Thinkers360 President, McKnight Consulting Group 3 x Inc 5000

