
COMN 1.1 Reference 1

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

COMN 1.1 Reference
Revision 1.1, 2017-03-30
by Theodore S. Hills, thills@acm.org. Copyright © 2015-2016

Contents

1 Introduction ... 2

1.1 Release 1.1 ... 3

1.2 Release 1.0 ... 3

1.3 Release 0.4 ... 3

1.4 Release 0.3 ... 3

1.5 Release 0.2 ... 3

2 General Symbology Principles ... 4

2.1 Basic Polygons ... 4

2.2 Rectangles Depicting Types and Classes ... 5

2.2.1 Typographical Conventions .. 5

2.2.2 Subdividing Rectangles .. 5

2.2.3 Component Typographical Conventions .. 7

2.2.4 Multiplicity ... 7

2.2.5 Optionality .. 7

2.2.6 Unknown ... 8

2.2.7 Key Notation ... 9

2.2.8 Foreign Key Notation ... 10

2.3 Hexagons Depicting Variables and Objects ... 11

2.3.1 Typographical Conventions .. 11

2.3.2 Subdividing Hexagons .. 11

2.4 Rounded Rectangles Depicting Values and States ... 12

2.4.1 Typographical Conventions .. 12

2.4.2 Subdividing Rounded Rectangles ... 12

2.5 Worlds .. 12

3 Relationships ... 13

3.1 Multiplicity and Optionality ... 15

COMN 1.1 Reference 2

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

3.2 Completeness ... 15

4 Hardware ... 16

4.1 Simple Hardware Objects, Classes, and Collections.. 16

4.2 Composite Hardware Objects, Classes, and Collections.. 17

5 Software .. 19

6 Types and Variables .. 21

6.1 Simple Variables and Types ... 21

6.2 Composite Variables, Types, and Collections ... 22

7 Real-World Objects and Concepts .. 24

8 Relationships from Descriptors to That Described ... 24

8.1 Relationship between Type, Variable, and Value .. 24

8.2 Relationship between Class, Object, and State .. 25

9 Representation Relationships .. 26

10 Derivation Relationships ... 29

10.1 Extension Relationship ... 29

10.2 Restriction Relationship ... 32

11 Reference Relationships.. 34

11.1 Containment.. 34

11.2 Collection.. 35

12 Composition Relationships ... 36

12.1 Blending Relationship .. 36

12.2 Aggregation Relationship ... 36

12.3 Assembly Relationship ... 37

13 Role Boxes .. 38

1 Introduction
This document provides a complete reference for the Concept and Object Modeling Notation
(COMN, pronounced “common”), release 1.1. The book NoSQL and SQL Data Modeling
(Technics Publications, 2016) reflects release 1.0 of COMN.
This is a reference, not a tutorial. This document is designed to support a quick check of how to
draw or notate something in COMN.
After the section on general symbology principles, the notation is presented starting with the
most concrete things, namely hardware objects and their classes and states, then moves to

https://technicspub.com/nosql/

COMN 1.1 Reference 3

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

software objects and their classes and states. The reference then moves to the conceptual, namely
variables and their types and values, and finally to real-world objects and their classes and states.

1.1 Release 1.1
Notation added to represent a view. “expr” preceding a type or class name indicates that the type
or class is defined as an expression, such as a SQL view.

1.2 Release 1.0
A double-arrowhead symbol has been added to indicate composition by blending.
The form of the open arrow has been changed to be more similar to arrow styles available in
many drawing tools.
The style of relationship lines, dashed or solid, has been changed to indicate whether the
relationship is conceptual or physical, respectively. This is in keeping with the style of polygon
outlines.
There is recognition that composite types may have methods. This does not change the
symbology; it only changes its description and usage.
When a polygon is divided into sections, it is now stipulated that the name of the thing
represented by the polygon be centered in the top section.
Nomenclature for referencing keys has been added.
Role boxes have been added.

1.3 Release 0.4
Multiplicity is now given following a component’s type’s name, since it changes the type (to an
array).
A collection of variables, concepts, objects or states is now indicated by shadowing behind the
polygon.

1.4 Release 0.3
Cardinality is now called multiplicity. The term cardinality is reserved for the actual count of
items in a set. Multiplicity gives the allowed values for cardinality. Multiplicity is now indicated
by integer expressions surrounded by curly braces, the asterisk, and the plus sign—exactly those
symbols used in extended regular expressions.

1.5 Release 0.2
Cardinality is now indicated by expressions surrounded by square brackets.
A colon separates a component’s name from the type or class name which may follow it.

COMN 1.1 Reference 4

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

2 General Symbology Principles
COMN strives to use a relatively small number of symbols that can be combined in many ways
to express the varieties of entities, attributes, and relationships found in the real world, in data,
and in objects. This approach is one of intrinsic simplicity but combinatorial complexity.
COMN’s graphic symbols include:

• 3 basic polygons (rectangle, hexagon, rounded rectangle) representing types/classes,
variables/objects, and concepts/states

• a pentagon to show restriction (subtyping)
o optional X for exclusive subtyping

• a triangle to show extension
o optional X for exclusive extension

• the line for relationships
o arrowheads: none, open arrow, closed arrow, double closed arrow, closed circle
o tails: none, open circle, X

• multiplicity specified by number ranges and symbols (+, *) on both relationship lines and
components

• optionality and unknown-ness represented distinctly by ‘?’ in different positions

2.1 Basic Polygons
There are three kinds of polygons, used as shown in Table 1 below. The name of the thing
represented is typically centered in the polygon. Typographical conventions are as shown in the
table.
The names of logical things (types, variables, values) and of real-world things follows general
English rules. More particular rules are given in following sections.
The names of implementation things (software classes and objects) are given following the
generally strict rules imposed by implementation contexts. In most cases these names may only
use alphabetic letters, numbers, and the underscore character (“_”). Some implementation
contexts are less restrictive; some are more restrictive.

COMN 1.1 Reference 5

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

Shape Example Represents

rectangle

a type or a class

name centered in rectangle, Title Case

hexagon

a variable or an object

name centered in hexagon

Title Case (proper noun) if specific instance identified

lower case with preceding “a” or “an” if typical instance
identified

rounded
rectangle

a concept (including a value or a meaning) or a state

name centered in rounded rectangle

no particular letter case dictated

Table 1. COMN Polygons

2.2 Rectangles Depicting Types and Classes
2.2.1 Typographical Conventions
A type or class name is usually given in Title Case.
If a composite type or class extends another type or class, this may be indicated by including the
name of the base type or class, enclosed in guillemets, following the type or class name, as in
“«base class»”. Alternatively, this may be indicated with an extension symbol. See the section on
Extension Relationship.
If a composite type or class is defined as an expression, such as an SQL view, the type or class
name should be preceded by “expr”.

2.2.2 Subdividing Rectangles
A rectangle, depicting a type or class, may be divided into three sections by two horizontal lines.
The topmost section contains the name of the type or class, centered, possibly including a base
class enclosed in guillemets (« »). The middle section lists the components of the type or class,
left justified. If the thing represented can’t have components (such a class interface), the middle
section is shown with diagonal crossed lines through it. The bottom section lists the methods of
the type or class. If the thing represented can’t have methods (such as an unencapsulated
composite type), the bottom section is shown with diagonal crossed lines through it. See Table 2
below for illustrations.

COMN 1.1 Reference 6

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

Shape Example Represents

divided
solid
rectangle

software class name

component: class
component: class

method
method

a software class

divided
dashed
rectangle,
bottom
section
crossed
out

composite type name
component: type
component: type

a type with no methods

divided
solid
rectangle,
middle
section
crossed
out

class interface name

method
method

a class interface (no components)

divided
rectangle,
bottom
section
crossed
out

composite hardware class name

component: class
component: class

a composite hardware class (no methods)

Table 2. Divided Composite Type and Class Rectangles

COMN 1.1 Reference 7

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

2.2.3 Component Typographical Conventions
In a divided polygon, the name of the thing represented is centered in the top section, component
names, if any, are left-justified in the middle section, and method names, if any, are left-justified
in the bottom section. If a component’s type or class is shown, it follows the component name
and is separated from the component name by a colon.

2.2.4 Multiplicity
In a type or class, a component’s type may be followed by expressions that indicate number or
optionality, as follows1:

• no suffix: the component must appear exactly once in every instance of the type or class;
for example, “String”

• a plus sign, indicating that one to any integral number of elements may occur; for
example, “PhoneNumber+”

• an asterisk, indicating that zero to any integral number of elements may occur; for
example, “String*”

• integer expressions enclosed in a pair of curly braces(“{“ and “}”) giving the possible
numbers of instances of the component. This defines the component as an array. The
expressions can take the following forms.

o a single positive integer, indicating exactly that many elements will occur; for
example, “String{3}”

o a range of integers specified as two non-negative integers separated by a hyphen;
for example, “Address{0-2}”

o a comma-separated list of non-negative integers giving allowable numbers of
elements; for example, “Rational{0, 2, 4, 6}”

o any combination of number ranges and non-negative integers; for example,
“ArgType{0, 2-5, 9}”

These symbols may also be used on the end of a relationship line, indicating the multiplicity of
occurrences of the thing at that end of the line.
Any multiplicity other than 1 indicates that the component’s type is an array whose element type
is given by the type preceding the expression.

2.2.5 Optionality
In a type or class, a component’s name may be preceded by a question mark (“?”), indicating that
the component is optional, and may appear zero or one times in any instance of the type or class;
for example, “?MiddleName”

• This is not the same as potentially unknown, which is signified by a question mark
following the component’s type or class name. See below.

1 Some readers might recognize that these expressions are used in extended regular expressions.

COMN 1.1 Reference 8

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

• This is not the same as “{0-1}” or “{0,1}”, which define the component as an array of
zero or one elements, and is generally deprecated.

The question mark may also be used on the end of a relationship lines, indicating the optionality
of occurrence of the thing at that end of the line.
An optional component is implicit extension. The presence of an optional component in a type or
class implicitly defines two types or classes: a base type or class without the optional component,
and an extending type or class that adds the optional component.

2.2.6 Unknown
A component’s type’s name may be followed by a question mark; for example, “BirthDate:
date?”. This indicates that the type is extended to include an additional value that represents that
the actual value of the component is unknown.

• This is not the same as an optional component, which is signified by a question mark
preceding the component’s name. See above.

Multiplicity, optionality, and unknown-ness may be combined in a single component.

2.2.6.1 Example
See Figure 1 below for an example illustrating component number and optionality.

Person ID: integer
Person First Name: string(120)
?Person Middle Name: string(120)
Person Last Name: string(120)
Person Birth Date: date?
Person Addresses: Postal Address{1-2}
Person Phone Numbers: Phone Number*
Person Email Addresses: Email Address*

Person

Figure 1. Illustration of Component Number and Optionality

• Person First Name, Person Last Name, Person Birth Date, and at least one Person
Address must exist in every instance of this type.

• Person Middle Name may or may not exist in any instance of this type.

• Although Person Birth Date must exist in every instance, its value may indicate that the
actual date is unknown. This reflects the reality that every person has a birth date, though
it is not always known.

• The components Person Addresses, Person Phone Numbers, and Person Email Addresses
are arrays whose element types are given to the right of the component names.

• There must be at least one, and might be as many as two, Person Addresses in any
instance of this type.

COMN 1.1 Reference 9

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

• There can be any number of Person Phone Numbers and Person Email Addresses,
including zero, in any instance of this type.

2.2.7 Key Notation
When a composite type or class is a type or class of a collection of variables or objects, the
collection may have a key. A key is a component or set of components whose values or states are
always unique in any set of variables or objects of the type or class. A key with a single
component is a simple key; a key with multiple components is a composite key. A collection
may have any number of keys.
There are three types of keys:

• candidate key (abbreviated as CK): Any component or set of components that are a key
are properly referred to as a candidate key.

• primary key (abbreviated as PK): In some contexts, a particular CK might be elevated to
the status of a primary key. A collection may have no more than one PK. At the physical
level, a CK might be chosen as the PK because access to the collection will be most
frequently via the PK, and therefore access via the PK should be optimized (usually by
building a PK index or by organizing the collection in PK order). At a logical level, there
is rarely good reason to identify one key from the set of CKs as a PK. Notwithstanding, it
is almost a universal practice to talk of a collection’s PK even when it is the collection’s
only key or when there is insufficient justification to select a CK as the PK.

• alternate key (abbreviated as AK): When one CK of a collection is selected to be its PK,
then the remaining keys may be referred to as AKs.

The participation of a component in a key is indicated by following the component’s name with
CK, PK, or AK in parentheses. If the component’s type or class is included, then the CK, PK, or
AK precedes the colon that separates the component name from its type or class. This is
appropriate as a key designation, like a component’s name, indicates its role and not its type.
When there is more than one CK or AK, the CK/AK letters are followed by a natural number to
distinguish them. When there is more than one component to a key, a suffix of a period (“.”) and
a natural number is used to distinguish the components of the key.

2.2.7.1 Examples:
A collection with a single simple key.

Person ID (CK): integer
OR
Person ID (PK): integer

A collection with a single composite key:
Order ID (CK.1): integer
Coffee Shop ID (CK.2): integer
OR
Order ID (PK.1): integer

COMN 1.1 Reference 10

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

Coffee Shop ID (PK.2): integer
A collection with two simple keys:

User ID (CK1): string{1-255}
Employee ID (CK2): integer
OR
User ID (PK): string{1-255}
Employee ID (AK): integer

A collection with a simple key and a composite key:
Employee ID (CK1): integer
User ID Domain Name (CK2.1): string{1-255}
User ID (CK2.2): string{1-255}
OR
Employee ID (PK): integer
User ID Domain Name (AK.1): string{1-255}
User ID (AK.2): string{1-255}

2.2.8 Foreign Key Notation
When a composite type or class contains a component or components whose values or states
reference a key of some collection, those components are called a foreign key. A foreign key is
indicated as the type of the component or components. The type is given as FK followed by an
expression in parentheses that identify the collection referenced. If the collection referenced has
more than one key, then the reference to the collection is followed by a comma and the
collection’s key designation as described in the previous section.
If the foreign key referenced is a composite key, then either:

1. The foreign key component is a composite component, and the FK type expression is
given as described above; or

2. The foreign key is provided as multiple components, one per referenced component, and
each component’s FK type expression references a single key component, using the
designations described in the previous section.

2.2.8.1 Examples:
A foreign key reference to a collection with a single simple key.

Supervisor Person ID: FK(Persons)
A foreign key reference to a collection with a single composite key:

Coffee Shop Order: FK(Orders)
OR
Coffee Shop Order Order ID: FK(Orders, CK.1)

COMN 1.1 Reference 11

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

Coffee Shop Order Coffee Shop ID: FK(Orders, CK.2)
A foreign key reference to a collection with two simple keys:

User ID: FK(Users, CK1)
OR
User Employee ID: FK(Users, CK2)

A foreign key reference to a collection with a simple key and a composite key:
User Employee ID: FK(Users, CK1)
OR
User ID: FK(Users, CK2)
OR
User ID Domain Name: FK(Users, CK2.1)
User ID: FK(Users, CK2.2)

2.3 Hexagons Depicting Variables and Objects
2.3.1 Typographical Conventions
If a variable or object is meant to depict a typical instance, then its name should be all in lower
case, preceded by an indefinite article (“a” or “an”); for example, “a person”, “an order”.
If a variable or object is meant to depict a particular instance, then its name is a proper noun and
it should be in Title Case, preceded by the definite article (“The”) if appropriate; for example,
“The White House”, “The Magna Carta”, “IBM Corporation”.

2.3.2 Subdividing Hexagons
A hexagon representing a composite variable or object may be divided into two sections by a
horizontal line in order to show the values or states of its components. The line is placed near the
top of the symbol. The topmost section contains the name of the variable or object, centered,
possibly including the type or class of the variable or object enclosed in guillemets (« »). In the
space below the line, component names are listed along with an equal sign and an expression
giving the component’s value in the instance represented by the hexagon. See Figure 2 below for
an example. Conventions for component names, multiplicity, and optionality are the same as for
components of types and classes. See the section above, Subdividing Rectangles.

component: type
component: type
component: type

composite var. name

Figure 2. Subdivided Hexagon

COMN 1.1 Reference 12

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

2.4 Rounded Rectangles Depicting Values and States
2.4.1 Typographical Conventions
No typographical conventions have been established for the names of values and states.

2.4.2 Subdividing Rounded Rectangles
A rounded rectangle representing a composite value or state may be divided into two sections by
a horizontal line in order to show the values or states of its components. The line is placed near
the top of the symbol. The topmost section contains the name of the value or state, centered. In
the space below the line, component names are listed along with an equal sign and an expression
giving the component’s value or state in the composite value or state represented by the rounded
rectangle. See Figure 3 below for an example.

component = value
component = value

composite value name

Figure 3. Subdivided Rounded Rectangle

2.5 Worlds
Polygon outlines can be solid or dashed, normal or bold, as shown in Table 3 below.

COMN 1.1 Reference 13

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

Outline Example Represents

bold solid
line
(3 pt.)

a real-world class, object (hexagon), or state (rounded
rectangle)

bold
dashed
line
(3 pt.)

a type, concept (hexagon), or value (rounded rectangle) of
something that is not symbolic or lexical (though its
representation might necessarily be symbolic or lexical)

dashed
line
(0.72 pt.)

a type, variable (hexagon), or value (rounded rectangle) of
something that is symbolic or lexical. Such a type is often
called a logical type or logical data type

solid line
(0.72 pt.)

a software class, object (hexagon), or state (rounded
rectangle)

Table 3. Worlds Indicated by Line Style

3 Relationships
A relationship between any two things is represented as a line connecting the symbols that
represent those things. The line may be straight, curved, or angled at one or more points. The
shape of the line does not alter its meaning.
Lines representing relationships indicate the “world” in the same way as the outline of polygons
indicate the world, as show in Table 4 below.

COMN 1.1 Reference 14

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

Outline Example Represents

bold solid
line
(3 pt.)

a physical relationship between two real-world objects

bold
dashed
line
(3 pt.)

a conceptual relationship between two things where at least
one thing is not symbolic or lexical

dashed
line
(0.72 pt.)

a conceptual relationship between two things where at least
one thing is symbolic or lexical

solid line
(0.72 pt.)

a physical relationship between two computer objects; that
is, between two hardware and/or software objects

Table 4. Relationship Worlds Indicated by Line Style

An unadorned line—that is, a line without arrowheads or other decorations at either end—
indicates a relationship generically. If a relationship line connects polygons of different shape,
the line does not need to be annotated to indicate the nature of the relationship, as only certain
kinds of relationships can exist between the things represented by those polygons, as Table 5
below shows.

polygon 1 polygon 2 meaning of unadorned relationship
line

type (dashed rectangle) variable (dashed hexagon) the variable has the type

type (dashed rectangle) value (dashed rounded rectangle) the type includes the value

variable (dashed hexagon) value (dashed rounded rectangle) the variable is bound to the value

class (solid rectangle) object (solid hexagon) the object is an instance of the class

class (solid rectangle) state (solid rounded rectangle) objects of the class may have the state

object (solid hexagon) state (solid rounded rectangle) the object has the state
Table 5. Relationships between Dissimilar Polygons

If an unadorned line connects polygons of the same shape, then the particular nature of the
relationship must be spelled out by a verb or verb phrase, in the present tense, placed next to the
line approximately in the center of the line, which can be used to form a phrase using the names
of the thing at each end of the line as subject and object. For example, a line from a symbol
named A to a symbol named B which represents an implementation relationship should have the
verb “implements” next to the line near its center, and can be read, “A implements B”. If the
phrase cannot be read left-to-right, either because the two symbols are not positioned in a left-to-

COMN 1.1 Reference 15

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

right relationship, or because they are but in right-to-left order, either or both of two alternatives
may be employed:

1. An arrow may be placed at the beginning or end of the verb phrase to indicate which way
to read the relationship. For example, if symbol A is to the right of symbol B, then the
word “implements” can be preceded by an arrow, as in “←implements”, to indicate that
A implements B and not the other way around.

2. The verb phrase may be reworded to indicate the reverse relationship when reading left-
to-right. In the example above, the verb phrase may be altered to “is implemented by”, to
indicate, in a left-to-right reading, that B is implemented by A.

A relationship line may be adorned with either or both verb phrases, each with an arrow to
indicate the reading direction, in order to supply the intended wording for the relationship in both
directions. For example, “←implements” and “is implemented by→”. See Figure 4 below.

B A←implements
is implemented by→

Figure 4. Labeling Unadorned Relationship Lines

There are certain relationship types that occur frequently and/or have special significance. For
these relationships, there are particular symbols used at the beginnings and/or ends of each
relationship line. If these symbols are arrowheads or are similar to arrowheads, then, by
convention, these arrowheads indicate direction of reference, which indicates which notational
element references another. The directionality of such arrowheads should not be interpreted as
indicating a direction of data flow or anything else, but only direction of reference. The
significance of various arrow heads and tails on relationship lines is described in the sections on
the various kinds of relationships.

3.1 Multiplicity and Optionality
In the absence of other markings, a relationship line indicates that exactly one instance of the
thing at one end of the line is related to exactly one instance of the thing at the other end of the
line. Multiplicity and optionality is indicated using the same expressions as used within a list of
components in a type or class rectangle. See the section Multiplicity under Rectangles Depicting
Types and Classes, above.

3.2 Completeness
Given any two symbols on the same page of a diagram, every relationship must be shown
between the two symbols that exist in the model. This convention enables a diagram to indicate
whether two things represented are in fact not directly related. Without this convention, a
diagram could never be interpreted as being complete in the scope of the symbols in the diagram.
This leads to a strategy of diagram management where symbols are added to or removed from a
diagram in order to keep the diagram comprehensible, given the number of relationship lines that
must appear. A diagram becomes focused on a “subject area”, and becomes a “package” or
subset of an overall model. It also leads to a strategy where primitive things are kept off most

COMN 1.1 Reference 16

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

diagrams. For instance, the symbols for widely used types or classes, such as the Integer type or
the ComputerObject class, will rarely be shown on any diagram, since the number of relationship
lines to such symbols would be too great to be informative.

4 Hardware
Computers are composed of material objects that are stateful. When the state of one of these
stateful material objects can be read and/or altered by a computer’s instructions, we call it a
hardware object.

4.1 Simple Hardware Objects, Classes, and Collections
An individual, simple hardware object is represented by an irregular hexagon, with an X through
it to indicate that it has no components, and the name of the object in the center of the symbol.
See Figure 5 below.

simple hardware
object name

Figure 5. A Simple Hardware Object

A description of potential or actual simple hardware objects is called a simple hardware class. A
simple hardware class is represented by a rectangle with an X through it to indicate that it has no
components. See Figure 6 below. Since simple hardware objects have no components, and
hardware classes have no methods, the symbol for a simple hardware class is never divided into
sections.

simple hardware class
name

Figure 6. A Simple Hardware Class

A collection of simple hardware objects is represented by a simple hardware object symbol with
a shadow. See Figure 7 below. Rather than the name of a particular object, the name of the
collection is in the middle of the symbol.

simple hardware
object collection

name

Figure 7. A Simple Hardware Object Collection

COMN 1.1 Reference 17

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

A particular state of a simple hardware object is represented by a rectangle with rounded corners,
with an X through it, and the name of the state in the center of the symbol. See Figure 8 below.

simple hardware object
state name

Figure 8. A Simple Hardware Object State

A set of states of a simple hardware object is represented by a simple hardware object state
symbol with a shadow. See Figure 9 below. Rather than the name of a particular state, the name
of the set of states is in the middle of the symbol.

simple hardware object
state set name

Figure 9. A Simple Hardware Object State Set

4.2 Composite Hardware Objects, Classes, and Collections
An individual, composite hardware object is represented by an irregular hexagon, with the name
of the object in the center of the symbol. See Figure 10 below. (This is the same symbol as is
used for a software object.)

composite
hardware object

name

Figure 10. A Composite Hardware Object

A description of potential or actual composite hardware objects is called a composite hardware
class. A composite hardware class is represented by a rectangle, which may or may not be
divided into three sections. See Figure 11 below. The undivided rectangle is the same symbol
that is used for software classes. Note the X through the section of the divided symbol normally
reserved for methods. Since a hardware class cannot encapsulate, because it is not a software
artifact, it cannot have methods which have exclusive access to the components.

COMN 1.1 Reference 18

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

composite hardware class name

component: class
component: classcomposite hardware class

name

Figure 11. A Composite Hardware Class

A collection of composite hardware objects is represented by a composite hardware object
symbol with a shadow. See Figure 12 below. (This is the same symbol as is used for a collection
of software objects.) Rather than the name of a particular object, the name of the collection is in
the middle of the symbol.

composite
hardware object
collection name

Figure 12. A Composite Hardware Object Collection

A particular state of a composite hardware object is represented by a rectangle with rounded
corners, with the name of the state in the center of the symbol. See Figure 13 below. (This is the
same symbol as is used for the state of a software object.)

composite hardware
object state name

Figure 13. A Composite Hardware Object State

The states of the components of a composite hardware object state may be illustrated as shown in
Figure 14 below.

COMN 1.1 Reference 19

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

composite hardware object state name

component = state
component = state

Figure 14. A Composite Hardware Object State with Component States

A set of states of a composite hardware object is represented by a composite hardware object
state symbol with a shadow. See Figure 15 below. (This is the same symbol as is used for a set of
states of a software object.) Rather than the name of a particular state, the name of the set of
states is in the middle of the symbol.

composite hardware
object state set name

Figure 15. A Composite Hardware Object State Set

5 Software
All software objects, their classes, and their states are composite. The symbology for software
objects reflects this.
An individual software object is represented by an irregular hexagon, with the name of the object
in the center of the symbol. See Figure 16 below.

software object
name

Figure 16. A Software Object

A description of potential or actual software objects is called a software class. A software class is
represented by a rectangle, which may or may not be divided into three sections. See Figure 17
below.

COMN 1.1 Reference 20

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

software class name

software class name

component: class
component: class

method
method

Figure 17. A Software Class

A collection of software objects is represented as a software object symbol with a shadow. See
Figure 18 below. Rather than the name of a particular object, the name of the collection is in the
middle of the symbol.

software object
collection name

Figure 18. A Software Object Collection

A particular state of a software object is represented by a rectangle with rounded corners, with
the name of the state in the center of the symbol. See Figure 19 below.

software object state
name

Figure 19. A Software Object State

The states of the components of a software object state may be illustrated as shown in Figure 20
below.

software object state name

component = state
component = state

Figure 20. A Software Object State with Component States

COMN 1.1 Reference 21

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

A set of states of a software object is represented by a software object state symbol with a
shadow. See Figure 21 below. Rather than the name of a particular state, the name of the set of
states is in the middle of the symbol.

software object state set
name

Figure 21. A Software Object State Set

6 Types and Variables
6.1 Simple Variables and Types
An individual, simple variable is represented by a dashed irregular hexagon, with an X through it
to indicate that it has no components, and the name of the variable in the center of the symbol.
See Figure 22 below.

simple variable
name

Figure 22. A Simple Variable

The type of a simple variable is a simple type, which is represented by a dashed rectangle with
an X through it to indicate that it has no components. See Figure 23 below. Since simple types
have no components and no methods, the symbol for a simple type is never divided into sections.

simple type name

Figure 23. A Simple Type

A collection of simple variables is represented by a simple variable symbol with a shadow. See
Figure 18 below. Rather than the name of a particular variable, the name of the collection is in
the middle of the symbol.

simple variable
collection name

Figure 24. A Simple Variable Collection

COMN 1.1 Reference 22

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

A particular value of a simple type is represented by a dashed rectangle with rounded corners,
with an X through it, and the name of the value in the center of the symbol. See Figure 25 below.

simple value name

Figure 25. A Simple Value

A set of values of a simple type is represented by a simple type value symbol with a shadow. See
Figure 26 below. Rather than the name of a particular value, the name of the set of values is in
the middle of the symbol.

simple value set name

Figure 26. A Simple Value Set

6.2 Composite Variables, Types, and Collections
An individual, composite variable is represented by a dashed irregular hexagon, with the name of
the variable in the center of the symbol. See Figure 27 below.

composite variable
name

Figure 27. A Composite Variable

A description of potential or actual composite variables is called a scheme. A scheme is
represented by a rectangle, which may or may not be divided into three sections. See Figure 28
below.

composite type name
component: type
component: type

composite type name

Figure 28. A Composite Type

COMN 1.1 Reference 23

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

A collection of composite variables is represented by a composite variable symbol with a
shadow. See Figure 29 below. Rather than the name of a particular variable, the name of the
collection is in the middle of the symbol.

composite variable
collection name

Figure 29. A Composite Variable Collection

A particular value of a composite type is represented by a dashed rectangle with rounded corners,
with the name of the value in the center of the symbol. See Figure 30 below.

composite type value
name

Figure 30. A Composite Type Value

The values of the components of a composite value may be illustrated as shown in Figure 31
below.

composite value name

component = value
component = value

Figure 31. A Composite Value with Component Values

A set of values of a composite type is represented by a composite type value symbol with a
shadow. See Figure 32 below. Rather than the name of a particular value, the name of the set of
values is in the middle of the symbol.

composite value set name

Figure 32. A Composite Value Set

COMN 1.1 Reference 24

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

7 Real-World Objects and Concepts
Physical objects may exist outside any computer, in what we call “the real world”. When
depicting real-world physical objects, their classes, collections of such objects, and their states,
we use the same solid-outline symbols as for software objects, except that we use heavier (bold)
lines for their outlines and internal lines.
Variables, their types, collections of variables, and their values are always conceptual, so there is
no need to distinguish whether they exist in the real world or inside a computer: they always
exist only conceptually. Concepts that are not related to data (examples: roles played by persons,
the concept of a law) are depicted with the same dashed-line symbols as for variables, types, and
values, except that we use heavier (bold) lines for their outlines and internal lines

8 Relationships from Descriptors to That
Described

8.1 Relationship between Type, Variable, and Value
The relationships between types, variables, and values may only be as shown in Figure 33 below,
so there is no need to label these relationships explicitly, nor is there any need for arrowheads or
other adornments. These relationships hold for both simple and composite types, variables, and
values.

COMN 1.1 Reference 25

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

type name

variable name

value name

↓ includes

Figure 33. Relationships between Type, Variable, and Value (Labels Unnecessary)

8.2 Relationship between Class, Object, and State
The relationships between classes, objects, and states may only be as shown in Figure 34 below,
so there is no need to label these relationships explicitly, nor is there any need for arrowheads or
other adornments. These relationships hold for both simple and composite classes, objects, and
states.

COMN 1.1 Reference 26

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

class name

object name

state name

↓ has

Figure 34. Relationships between Class, Object, and State (Labels Unnecessary)

9 Representation Relationships
A representation relationship may exist between many combinations of types, classes, variables,
objects, values, and states. A relationship line is adorned with a solid circle at the end next to the
thing being represented by the thing at the other end of the line. Representation is always
conceptual; therefore, a representation line is always drawn dashed. See Figure 35 below for an
example of how classes may represent types, objects may represent variables, and states may
represent values. The words “represents” are not necessary, as the solid circle indicates that that
is the meaning of the relationship line.

COMN 1.1 Reference 27

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

composite type name

composite variable
name

composite value name

composite class name

composite object
name

composite state name

← represents

← represents

← represents

includes↓

Figure 35. Representation of Logical Things by Physical Things

A common case of representation is for values to represent objects. We call this identification.
See Figure 36 below for an example of identification.

COMN 1.1 Reference 28

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

← represents

← represents

Social Security Number
Type

123-45-6789

US Persons

a Person

various variables

Figure 36. Identification

Three levels of abstraction of data modeling can be depicted as in Figure 37 below. It is
important to notice that there is no conceptual level, as there is in entity-relationship modeling.
Instead, there is a real-world level, depicting things in the real world. The conceptual level is
nothing more than a simplification of the logical level, by suppressing the display of attributes.

COMN 1.1 Reference 29

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

type

value

class

state

← represents

← represent

← represents

class
← represents

← represents
object

real world logical design physical design

variables objects

Figure 37. Three Model Levels

10 Derivation Relationships
A descriptor—that is, a type or a class—may be defined in terms of another descriptor of the
same kind. One descriptor in the relationship is called the base descriptor, and the other
descriptor, which references it in order to derive its own definition, is called the derived
descriptor. The derived descriptor often has a special name based on the type of derivation.

10.1 Extension Relationship
An extension relationship is a relationship between two composite descriptors of the same kind,
where one descriptor (the extending descriptor) adds components to the other descriptor (the
base descriptor).
An extension relationship is represented by a line from the extending descriptor to the base of a
triangle, and a line from the vertex opposite the base of the triangle to the base descriptor. See
Figure 38 below. The wide side of the triangle is towards the descriptor which has more
components, namely the extending descriptor. The direction of reference is assumed to be from
the extending descriptor to the base descriptor.
An extension relationship can exist between any two composite descriptors of the same kind.
The style of the triangle and the relationship lines should follow that of the descriptors, in weight
and solid/dashed.

COMN 1.1 Reference 30

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

base composite type
name

extending composite type
name

Figure 38. Extension

The inverse of extension is projection, where one descriptor (the projected descriptor) is
defined in terms of a subset of the components of a base descriptor. This is indicated by an
arrowhead on the relationship pointing to the base descriptor, reversing the assumed direction of
reference. See Figure 39 below. The wide side of the triangle is still towards the descriptor which
has more components.

projected composite type
name

base composite type
name

Figure 39. Projection

If more than one composite descriptor extends the same base composite descriptor, and they do
not exclude each other, then the relationship lines may pass through the same triangle or there
may be a triangle per extending descriptor. See Figure 40 below for an example of the latter
convention. The former convention can be useful if a total number of occurrences of the
extending descriptors is to be specified on the line near the base descriptor.

COMN 1.1 Reference 31

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

base composite type
name

extending composite type
1 name

extending composite type
2 name

Figure 40. An Example of Two Non-Mutually-Exclusive Extending Relationships

Mutually exclusive extension means that, for a given instance of a base type or class, an instance
of only one of the possible exclusively extending types or classes may exist. If there is a set of
extending descriptors which are mutually exclusive, then:

a) the extension relationship lines must pass through the same triangle; and
b) the triangle must have an X in its center.

See Figure 41 below for an example.

base composite type
name

exclusively extending
composite type 1 name

X

exclusively extending
composite type 2 name

Figure 41. An Example of Two Mutually-Exclusive Extending Relationships

The completeness principle of symbology requires that, if any exclusively extending descriptors
are shown on a diagram, then all exclusively extending descriptors must be shown.

COMN 1.1 Reference 32

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

10.2 Restriction Relationship
A restriction relationship is a relationship between two simple or composite descriptors of the
same kind, where one descriptor (the restricting descriptor) designates fewer values or states
than the other descriptor (the base descriptor). When a restriction relationship is defined between
two types, the restricting type is a subtype of the base type, and the base type is the supertype of
the restricting type.
A restriction relationship is represented by a line from the restricting descriptor to the vertex of
an irregular pentagon, and a line from the base of the pentagon to the base descriptor. See Figure
42 below. The wide side of the pentagon is towards the descriptor which designates more values
or states, namely the base descriptor. The direction of reference is assumed to be from the
restricting descriptor to the base descriptor.
A restriction relationship can exist between any two simple or composite descriptors of the same
kind. The style of the pentagon and the relationship lines should follow that of the descriptors, in
weight and solid/dashed.

base type name

restricting type name

Figure 42. Restriction

The inverse of restriction is inclusion, where one descriptor (the including descriptor) is defined
as having all of the values or states of the base descriptor, plus more. This is indicated by an
arrowhead on the relationship pointing to the base descriptor, reversing the assumed direction of
reference. See Figure 43 below. The wide side of the pentagon is still towards the descriptor
which designates more values or states.

COMN 1.1 Reference 33

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

including type name

base type name

Figure 43. Inclusion

If more than one descriptor restricts the same base descriptor, and they do not exclude each
other, then the relationship lines may pass through the same pentagon or there may be a pentagon
per restricting descriptor. See Figure 44 below for an example of the latter convention.

base type name

restricting type 1 name restricting type 2 name

Figure 44. An Example of Two Non-Mutually-Exclusive Restricting Relationships

Mutually exclusive restriction means that the restricting descriptors have no values or states in
common. If there is a set of restricting descriptors which are mutually exclusive, then:

a) the restriction relationship lines must pass through the same pentagon; and
b) the pentagon must have an X in its center.

See Figure 45 below for an example.

COMN 1.1 Reference 34

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

base type name

exclusively restricting type
1 name

exclusively restricting type
2 name

X

Figure 45. An Example of Two Mutually-Exclusive Restricting Relationships

The completeness principle of symbology requires that, if any exclusively restricting descriptors
are shown on a diagram, then all exclusively restricting descriptors must be shown.

11 Reference Relationships
Reference without composition is indicated by a relationship line with an open arrowhead. See
Figure 46 below for an example of reference between two types. A reference relationship may
also exist between two variables, two classes, and two objects. The relationship line may be
annotated with the exact nature of the reference.

←is referenced by
references→

composite type name name of type referenced
by component

Figure 46. Reference between Two Types

A relational foreign key relationship is indicated by a relationship line.

11.1 Containment
Containment is a relationship between an object called a container and some number of objects
called its contents. Containment is always between objects. Containment is by exclusive
reference. An X at the referencing end of the relationship line indicates exclusive reference. See
Figure 47 below for an example of containment.
A container is not considered to be composed of its contents. Some or all of the contents of a
container may be removed from a container, and additional objects may be added to a container,
without changing the composition of the container. However, these operations change the state

COMN 1.1 Reference 35

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

of the container, from empty to non-empty and possibly to full (if the container has a “full”
state).

container object
name

←is contained by
contains→X * composite object

collection name

Figure 47. Containment

A class of container objects can also be depicted in terms of the class of objects it may contain.
See Figure 48 below for an example of a container class and its content class.

container class name contained objects’
class nameX ←is contained by

contains→
*

Figure 48. Container Class

11.2 Collection
Collection is a concept, though a collection may consist of objects or concepts. A collection has
an exclusive relationship to the things in the collection, meaning that they may not
simultaneously belong (directly) to more than one collection. See Figure 49 below for an
example of a real-world collection of objects.

←belongs to
owns→Xcollection name

* objects in
collection

Figure 49. Real-World Collection of Objects

A collection type may be defined in terms of the class or type of its members. See Figure 50
below for an example.

←belongs to
owns→

collection type name collection members’
 class nameX *

Figure 50. A Collection Type

COMN 1.1 Reference 36

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

12 Composition Relationships
Composition is indicated by an arrow with a solid arrowhead. Any composite descriptor (a
composite type or class) incorporates its components either by aggregation (that is, inline) or by
assembly (that is, by reference).

12.1 Blending Relationship
Blending is a relationship from a composite to one of its components, such that the integrity of
the component is lost. Composition by blending can be illustrated between two types, two
variables, two values, two classes, two objects, and two states.
A blending relationship can exist between a composite descriptor and a simple or composite
descriptor representing the descriptor of one of its components.
A blending relationship is represented by a line from the composite descriptor to the descriptor
of a component, with a solid arrowhead at the component descriptor end. If the composite
descriptor is a type, then the line must be dashed. See Figure 52 below for an example of an
aggregation relationship between two classes.

blended class name name of class of blended
component

Figure 51. Blending between Two Classes

12.2 Aggregation Relationship
Aggregation is a relationship from a composite to one of its components, such that the integrity
of the component is preserved but it is difficult or impossible to separate the component from the
composite. Composition by aggregation can be illustrated between two types, two variables, two
values, two classes, two objects, and two states.
An aggregation relationship can exist between a composite descriptor and a simple or composite
descriptor representing the descriptor of one of its components. A composite descriptor which
specifies that a component be constructed in-line with other components has aggregated the
component.
An aggregation relationship is represented by a line from the composite descriptor to the
descriptor of a component, with a solid arrowhead at the component descriptor end. If the
composite descriptor is a type, then the line must be dashed. See Figure 52 below for an example
of an aggregation relationship between two classes.

COMN 1.1 Reference 37

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

aggregate class name component class 1 name

Figure 52. Aggregation between Two Classes

An aggregation relationship exists between a composite variable or object and one of its
component variables or objects when that composite variable or object’s descriptor has described
aggregation. See Figure 53 below for an example of an aggregation relationship between two
objects.

aggregate object
name

component object
name

Figure 53. Aggregation between Two Objects

12.3 Assembly Relationship
Assembly is a relationship from a composite to one of its components, such that the integrity of
the component is preserved and the component may be separated from the composite (which
destroys the composite). Composition by assembly can be illustrated between two types, two
variables, two classes, and two objects.
An assembly relationship can exist between a composite descriptor and a simple or composite
descriptor representing the descriptor of one of its components. A composite descriptor which
specifies that its component is to be held by reference has assembled that component into itself.
(This is not containment. See the discussion below of containment.)
An assembly relationship is represented by a line from the composite descriptor to the descriptor
of a component, with an open circle at the composite descriptor end and a solid arrowhead at the
component descriptor end. If the composite descriptor is a type, then the line must be dashed.
See Figure 54 below for an example of an assembly relationship between two classes.

assembly class name component class 1 name

Figure 54. Assembly between Two Classes

An assembly relationship exists between a composite variable or object and one of its component
variables or objects when the composite variable or object’s descriptor has described assembly.
See Figure 55 below for an example of an assembly relationship between two objects.

COMN 1.1 Reference 38

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

composite object
name

component object
name

Figure 55. Assembly between Two Objects

13 Role Boxes
Role boxes are an alternative way to represent relationships in a model. Role boxes are especially
useful when relationships are to be illustrated between the data attributes of a single composite
type, where there are often no foreign key relationship lines that may be labeled. See Figure 56
below for an example of their use.

Flight Schedule Record Type
Flight Number : FK(Flight
Numbers)
City: FK(City Names)
Time: Time of Day Type

Departures Arrivals

City Names

Flight
Numbers

Flight Number arrives at city City

Flight Number departs from city City

Flight Number arrives at time Time

Flight Number departs at time Time
Figure 56. Example of Use of Role Boxes

Each group of adjacent small boxes, called role boxes, represents a relationship. The relationship
is expressed by a sentence that makes an assertion. The sentence is a predicate. Each of the

COMN 1.1 Reference 39

Copyright © 2015-2016, Theodore S. Hills Revision 1.1, 2017-03-30

predicate’s variables is indicated by a name that is underlined. Each small box represents one of
the predicate’s variables, and is bound to a data attribute of the same name from the composite
type (or class) to which the small box is connected by an unadorned line.
Each role box may be connected to only one composite entity (type, class, variable, object,
variable collection, or object collection). Although the example in Figure 56 above only shows
lines connecting each role box group to a single composite variable collection, role boxes in a
single group may be connected to any number of composite entities.
Relationships between any number of data attributes, and predicates having any number of
variables, may be represented simply by adding a role box for each data attribute/predicate
variable.

	1 Introduction
	1.1 Release 1.1
	1.2 Release 1.0
	1.3 Release 0.4
	1.4 Release 0.3
	1.5 Release 0.2

	2 General Symbology Principles
	2.1 Basic Polygons
	2.2 Rectangles Depicting Types and Classes
	2.2.1 Typographical Conventions
	2.2.2 Subdividing Rectangles
	2.2.3 Component Typographical Conventions
	2.2.4 Multiplicity
	2.2.5 Optionality
	2.2.6 Unknown
	2.2.6.1 Example

	2.2.7 Key Notation
	2.2.7.1 Examples:

	2.2.8 Foreign Key Notation
	2.2.8.1 Examples:

	2.3 Hexagons Depicting Variables and Objects
	2.3.1 Typographical Conventions
	2.3.2 Subdividing Hexagons

	2.4 Rounded Rectangles Depicting Values and States
	2.4.1 Typographical Conventions
	2.4.2 Subdividing Rounded Rectangles

	2.5 Worlds

	3 Relationships
	3.1 Multiplicity and Optionality
	3.2 Completeness

	4 Hardware
	4.1 Simple Hardware Objects, Classes, and Collections
	4.2 Composite Hardware Objects, Classes, and Collections

	5 Software
	6 Types and Variables
	6.1 Simple Variables and Types
	6.2 Composite Variables, Types, and Collections

	7 Real-World Objects and Concepts
	8 Relationships from Descriptors to That Described
	8.1 Relationship between Type, Variable, and Value
	8.2 Relationship between Class, Object, and State

	9 Representation Relationships
	10 Derivation Relationships
	10.1 Extension Relationship
	10.2 Restriction Relationship

	11 Reference Relationships
	11.1 Containment
	11.2 Collection

	12 Composition Relationships
	12.1 Blending Relationship
	12.2 Aggregation Relationship
	12.3 Assembly Relationship

	13 Role Boxes

